
JOURNAL OF COMPUTATIONAL PHYSICS 47, 444-451 (1982) 

A New Algorithm for 
Molecular Dynamics Calculations 

SOREN TOXVAERD 

Institute for Chemistry, University of Copenhagen, 
DK-2200 Copenhagen N, Denmark 

Received January 6, 1982 

The Newtonian differential equations for N particles can be solved numerically by the 
molecular dynamics technique using different algorithms. An algorithm which makes use of 
the derivatives of the forces a(t) at the time when the new positions are calculated is found to 
be superior to the algorithms which extrapolate using time behaviour of the forces in the 
previous time period. 

1. INTRODUCTION 

In molecular dynamics (MD) calculations, the Newtonian equations of motion for 
N particles are solved numerically [l-3]. Simulation of macroscopic systems requires 
that N and the integration time At be large; however, the technical limit at present is 
Ns 10,000 and At 2 lo-’ sec. The upper limit of At depends on how accurately one 
needs to calculate the trajectories; e.g., the thermodynamics of bulk systems far from 
phase transitions depends only on the lower-order particle distribution functions and 
is rather insensitive to the precise structure. Therefore, a large integration step h can 
be applied in the MD calculations. Near a phase transition, this is no longer the case. 

A number of MD algorithms have been proposed. The simplest and most 
commonly used algorithm is a simple third-order predictor (Verlet algorithm [3]) 

rj(t + h) = 2ri(t) - ri(t - h) + h*a,(r,(t)) + O(h4), (1) 

by which the position of the ith particle at time t + h is obtained from its position at t 
and t - h and the acceleration ai which is calculated from the potential energy, U(r”), 
of the system at time t 

a, = -Vi U(r”). (2) 

In general, the predicted positions can be corrected, but it might require a calculation 
of the accelerations at the predicted positions and since most of the time in an MD 
calculation is spent evaluating a, one is usually content with a predictor provided it 
conserves the total energy of the system. The conservation of energy rather than other 
criteria is used as a test for how large h can be chosen and how simple an algorithm 
one can apply. Another criterion is the time reversibility of the trajectories. This test, 

444 
0021-9991/82/09044&08$02.00/0 
Copyright 0 1982 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



MOLECULARDYNAMICSALGORITHM 445 

however, can only be applied in connection with the criterion of conservation of 
energy, which can clearly be seen by considering the simple predictor algorithm (1) 
which is symmetric in time and thus time reversible [4] even for a time increment h 
for which the energy is no longer conserved. 

The MD calculation technique depends on the nature of the potential energy U(r”) 
which is often approximated by a sum of pair-potentials 

U(P) = -$ u(ri, q). (3) 
id 

A typical intermolecular pair-potential is strongly repulsive at short distances ‘ii with 
a weak long-range attraction. This results in rapid variation in time for the short- 
range forces [5] and makes the differential equations stiff [6], with the consequence 
that one is forced to choose a small time increment in order not to predict unrealistic 
collision positions. Even for small h, the simple algorithm (1) predicts collisions that 
are too energetic, but these terms are compensated by corresponding attractive and 
kinetic terms, so that the total energy E = K + U is conserved over many time steps, 
although it fluctuates. For larger h, the fluctuations are drastically increased and the 
mean energy (E)=(K)+ (U) is no longer conserved. Thus, the criterion of constant 
energy is not a sufficient test for the accuracy of an MD calculation scheme, since a 
conserved mean energy (E) can be obtained from correlated fluctuations in its two 
components which cancel each other. On the other hand, this circumstance gives an 
additional test for the MD calculations, which should provide correct fluctuations in 
K (and in the pressure), or what is equivalent, correct derivatives of the ther- 
modynamic functions. 

Near a phase change, e.g., melting, the high energy collisions might be the trigger 
of the phase transition by producing (artificial) fluctuations necessary to reach the 
new state. It is therefore especially important to apply an accurate MD algorithm at 
phase transitions, and this is the motivation for the present article, in which we derive 
a much more accurate MD predictor. Recently, a melting theory for two-dimensional 
(2-D) systems has been formulated. The melting is driven by dislocations and 
disclimations which are easy to identify in a MD simulation and thus give us an 
additional test, namely, that the density of crystal defects near melting should not 
depend on the actual algorithm used in the MD calculation. 

2. MD ALGORITHMS 

For simplicity, we consider a system of N Lennard-Jones (LJ) particles (see the 
Appendix). The second-order differential equations can be written as 

r/(t) = ai = -Vi (4) 
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where ai is given in units of the mass. If the positions and the higher order derivatives 
are known at time t, the positions after a time increment h can be evaluated from a 
Taylor expansion. In even powers of h, which is convenient due to relation (4), we 
obtain 

ri(t + h) = 2ri(t) - ri(t - h) + Pa,(t) + &h4a;(t) + O(P). (5) 

The velocities r;(t) to third order in h are 

r/(t) = (ri(t + h) - ri(t - h))/2h - +h’rf”(t) + O(h4). (6) 

These equations can be rewritten by expressing r,!‘(t) (and t$“(t)) as a sum of 
accelerations at previous time steps. To the same order in h as (5), 

ri(t + h) = 2ri(t) - ri(t - h) + $ [ 14ai(t) - 5ai(t - h) 

+ 4a,(t - 2h) - a,(t - 3/z)] + O(P). (7) 

Predictors (5) and (7) can be followed up by correctors, e.g., (7) is the predictor in a 
fifth-order Nordsieck-Gear method, which uses a fifth-order Adam-Moulton 
corrector [6,7]. In [7], the predictor (7) is followed by a fifth-order corrector 

ri,Corr(t + h) = ri(t) + hrf(t) + (h2/360)[38ai(t + h) + 171a,(t) 

- 36a,(t - h) + 7a,(t - 2/z)] + O(h6), (8) 

and the velocities are calculated to fourth order as 

rl(t + h) = (ri(t + h) - ri(t))/h + (h/360)[97a,(t + h) 

+ 114a,(t) - 39a,(t - h) + 8a,(t - 2/z] + O(h’). (9) 

Equations (5) and (7) are in principle different, and this makes it possible to calculate 
the trajectories in two ways: one can either extrapolate to the new positions using the 
derivatives of a,(t) at time t, or alternatively, one can extrapolate using the history of 
the trajectories. Traditionally, one makes use of the latter possibility because of its 
simplicity, ‘since one only needs to store three sets of accelerations during the MD 
calculations. The evaluation of a,!(t) in (5) is more complicated. Differentiation of (4) 
with respect to time gives [5] 

a/(t) = $J { [Bij(rij . r;j + rb2) + C,(r, e r;)2]rij 
j#i 

+ 2B,(r, e r;)r;, + A,$} 

and 

rG = fj {Ai,‘; + B,(r, * r;)rij}, 

j+i 

(10) 

(11) 
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where 

l d”(rij) A,, - 1 dA.. 
V rij dr, ’ 

B,5---+ 
rij dr, (12) 

and all the terms in (lo)-( 12) have to be taken at time t. 
It is, however, not possible to apply Eqs. (5) and (lo)-(12) directly in a standard 

MD program, where contributions to the acceleration of the ith particle at time t are 
calculated from contribution xju’(rij(t)). At the time when these contributions are 
calculated, the total acceleration ai( which is needed for evaluating a/(t) in 
Eq. (lo), is, of course, not known. Apparently one needs to perform an extra time- 
consuming double summation over the N particles in order to obtain a,!‘(t), and one 
could ask if it would not be simpler and more accurate to use the Verlet algorithm (1) 
and the half time increment instead of including an extra term in the expansion. This 
is, however, not the case. Halving the time increment increasing the (energy) 
accuracy by a factor 2 10 and doubles the computer time, whereas the inclusion of an 
extra term in the algorithm increases the accuracy by a factor of 10 - 70 and 
increases the computer time by only -20% (depending on N, U(T), and the computer). 
This is because we only need to calculate a:(t) for small particle distances rij due to 
the nature of the potential function and the geometry of the system which make 
differential equations (4) stiff. The many contributions to af(t) from larger distances 

TABLE I 

Sixty Time Steps with h = 0.005 

rolrm (E/N&) (IAE/NcI) x lo5 CV 

0 -1.414346 f 0.000224 5.154 1.8947 1 
1.1 -1.414322 f O.OOOOO4 0.203 1.91373 
1.5 -1.414339 f o.OOOOO3 0.159 1.91382 
2.0 -1.414365 f O.OOOOO3 0.157 1.91380 
2.5 -1.414367 f 0.000003 0.155 1.91380 

TABLE II 

Six Hundred Steps with h = 0.005 

Algorithm 

Verlet (1) 
Eq. (5) 
Predictor (7) 
Predictor- 

Corrector (7)-(9) 

kT/c pr;/e (IAE/NsI) x 10’ E’fN& CV Nd 

1.013 6.634 3.655 -0 1.54 54 
1.014 6.623 0.125 720 1.65 38 
1.013 6.614 1.198 -8.4 x lo-’ 1.63 40 

1.015 6.620 0.648 5.8 x 1O-4 1.72 44 
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TABLE III 

Two Hundred Steps with h = 0.015 

Algorithm kT/c PdnlE (IAE/NEI) x IO4 E//NE CV 

Verlet ( 1) 
Eq. (5) 
Predictor (7) 
Predictor- 

Corrector (7k(9) 

1.007 6.699 13.6 !ZO 1.54 
1.016 6.618 1.51 4.3 x 1om4 1.74 
0.914 5.810 22.2 -0.11 (-3.60) 

1.161 7.682 36.1 +0.19 (-0.91) 

are small and cancel each other. This property has been tested for three different 
systems: a two-dimensional (2-D) dense LJ fluid, the three-dimensional LJ system 
analysed in [7] and a 2-D LJ solid near its melting point [8]. For all three systems, 
we find that we only need to include contributions to a,!‘(t) from the short-range 
interactions. The results for the 2-D LJ solid, which is the most difftcult system to 
simulate of the three mentioned, are given in Tables I-III; the calculation details, 
units, etc. are given in the Appendix. 

In Table I, we present the result of MD calculations of 60 time steps with 
h = 0.005 and for different values of ra, the maximum particle distance for which 
contributions to the fourth-order term a/(t) are taken into account. The short time 
interval ensures that the trajectories are essentially the same for the live calculations. 
The energy E varies from step to step; the table gives the mean energy per particle 
(E/N&) and the root mean square (r.m.s.) deviation. The mean amplitude of energy 
(IAE/Ncl) is calculated as the mean of energy variations IEj - Ei-, 1 between 
successive time steps. The heat capacity c, is obtained from the temperature fluc- 
tuations [9]. Sixty time steps are not nearly enough to determine cv, but the 
variations in the instant value of c, show that the temperature fluctuations are also 
sensitive to the fourth-order term. For ra=O, algorithm (5) reduces to the usual third- 
order Verlet algorithm (1). Inclusion of the contributions to a;(t) from the short- 
range interactions increases the accuracy of the algoriihm drastically, whereas the 
contributions from long-range interactions cancel out. The same behaviour is 
observed for the two other systems and for other time increments. 

The result of a comparison of algorithm (5) with other algorithms is presented in 
Table II. The table shows the result of MD calculations for the reduced time At = 3 
performed as 600 time steps with h = 0.005. In this relatively short time interval, the 
systems will still be in the same subvolume of the phase space so that the differences 
in the observed quantities are caused by the algorithms. The mean amplitude of 
energy (IAE/N& I) gives the short-time behaviour of the energy. The conservation of 
energy over the total time interval At = 3 is measured by performing a linear least- 
squares fit to E(t). The slope, El/N&, gives the drift in energy, and for predictor (7) 
and Eqs. (7~(9), there is a drift in the total energy. The temperature and pressure are 
not sensitive to the choice of algorithm, but the variations in the instant values of the 
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heat capacity cv indicate that the usual MD technique might not be accurate enough 
near a phase transition. The number N, of crystal defects supports this conclusion. 
The defects are defined as particles with a number of nearest neighbours different 
from six [lo] (for the 2-D triangular lattice) and the particle configurations after 
each 60 steps were analysed for defects. The number of defects, using different 
algorithms, began to deviate after the first 240 steps, and Nd in Table II is the total 
number of defects in the last 6 subsets. The conclusion from the data in Table II and 
corresponding data for fluid systems in 2-D and 3-D is that algorithm (5) is much 
more accurate than either the Verlet algorithm (1) or algorithms (7)-(9) based on the 
difference method. The new algorithm keeps the energy more constant, and near a 
phase transition it leads to fewer extreme configurations defined as crystal defects. 

In Table III, we have shown the corresponding result of MD calculations again for 
At = 3, but now performed as 200 steps with h = 0.015 and using the same starting 
positions as for the data of Table II. Predictor (7) and corrector (7~(9) break down 
for this time increment. The energy is not conserved and the fluctuations are 
completely wrong, leading to unphysical heat capacities. The Verlet algorithm begins 
to predict wrong thermodynamic data (T, p). For 120 time steps with h = 0.025 the 
Verlet algorithm also breaks down, whereas algorithm (1) gives kT/c = 1.011 and 
prk/c = 6.537, which only deviates from the values in Table II by ~0.1%. 

The simple algorithm (1) is symmetric with respect to time and it is presumably 
this quality which ensures the stability of the algorithm even when the energy fluc- 
tuates. Thus, for h = 0.015, it was not possible to detect any energy drift using the 
Verlet algorithm. The higher-order algorithm (5), and its corresponding formula (6) 
for the velocity is only formally symmetric, because the velocities r;(t) in (10) are 
calculated by the difference method (A2). This shortcoming causes a (very small) 
drift in the energy for large h at high densities, which can be overcome by predicting 
the velocities by (A2) and correcting the velocities by (6). There is a cost in 
computer time, however, since one needs to calculate a;(t) twice. For h = 0.005 and 
for the two (less dense) fluid systems, we did not obtain any drift in the energy using 
(5). 

3. CONCLUSION 

The algorithm of Eq. (5) gives a possibility for calculating the trajectories much 
more accurately. The success of including the fourth-order term a;(t) in the algorithm 
is due to the strong repulsive behaviour of the pair-potential at short interaction 
distances, which make the differential equation stiff. Normally this behaviour 
complicates the calculations, since one needs to choose a correspondingly small time 
step when using an extrapolation algorithm. One can overcome this problem, 
however, by calculating the term &h4ay(t) directly. The stiffness of the differential 
equations reflects itself in the time behaviour of the forces. The short-range forces 
vary rapidly with time whereas the long-range forces vary slowly. This property was 
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used by Street, Tildesley, and Saville [5], who extrapolated the long-range forces by 
expanding a&). In fact, one could argue that the present article only serves to fully 
extend their discovery by including the fourth-order term for the short interaction 
distances directly in the algorithm. The two methods can be used simultaneously and 
supplement each other. 

As pointed out in the Introduction, one might not need to calculated the trajec- 
tories to a higher accuracy than, e.g., that given by the Verlet algorithm; it depends 
on the system and the property considered. The more accurate calculation scheme is 
suitable at phase transitions and the related interfacial systems [ 111 and for long-term 
correlated properties [ 12, 131. 

APPENDIX 

The Lennard-Jones potential is 

u&-) = E[(‘/r,)-‘* - 2(&p], (AlI 

and the truncated LJ potential, uLJ(r) - uLJ(rc), used in the MD computations was set 
equal to zero at r > 3r, (3.37 a). The calculations were performed for N = 256 
particles in a box with periodical boundaries. The data given in Tables I-III are for 
the solid state at the density prf,Jc = 1.1188 near the melting point. [8] The length is 
in units of rm and the time is in units of (mr~/~)““, where m is the mass of the 
particles. The energy of the system E/N&, the temperature kT/&, the ressure pri/&, 
and the heat capacity c, are calculated as time averages [S]. The calculations were 
performed in (Univac) double precision (18 digits) since single precision, in which the 
real numbers are only given by nine digits, led to round-off errors. 

The MD program used in the calculations employs a list of nearest neighbours 131. 
The calculations of the terms a:(t) were performed by storing x,(t), yij(t), and rtj(t) 
for rij < 1.1 r,,, during the traditional calculation of the accelerations. Before af’(1) and 
r?(t) can be calculated, we need to know not only ai( but also the velocities r;(t). 
These (predicted) velocities in (10) and (11) were calculated using the third-order 
formula [ 71 

h;(t) = ri(t) - ri(t - h) + $z2[2ai(t) + a,(t - h)] + O(h4). 642) 

The strategy in which the bond lengths are stored might not be the best. The best 
computer strategy depends on the actual computer, the energy function, and N. The 
storage of bond lengths (for j > i) requires a store of the order fn,ND, where n, is 
the number of nearest neighbours and D is the dimension. In MD programs with 
large numbers of particles, the linked-list technique is more efficient [ 141. Calculation 
of a;(t) can then be performed by considering only particles in the narest cell. 
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